Thursday, 15 June 2017

4 Point Moving Average

Moving Average Calculator Angesichts einer Liste von sequentiellen Daten können Sie den n - point gleitenden Durchschnitt (oder den gleitenden Durchschnitt) konstruieren, indem Sie den Durchschnitt jedes Satzes von n aufeinanderfolgenden Punkten finden. Wenn Sie beispielsweise den geordneten Datensatz 10, 11, 11, 15, 13, 14, 12, 10, 11 haben, wird der 4-Punkt-Verschiebungsdurchschnitt 11,75, 12,5, 13,25, 13,5, 12,25, 11,75, Bewegungsdurchschnitte verwendet Um sequentielle Daten zu glätten, bilden sie scharfe Spitzen und Dips, die weniger ausgeprägt sind, da jeder Rohdatenpunkt nur ein Bruchteilgewicht im gleitenden Durchschnitt gegeben wird. Je größer der Wert von n ist. Desto glatter ist der Graph des gleitenden Mittelwertes im Vergleich zum Graphen der ursprünglichen Daten. Aktienanalysten betrachten häufig bewegte Durchschnitte der Aktienpreisdaten, um Trends vorherzusagen und Muster besser zu sehen. Sie können den folgenden Taschenrechner verwenden, um einen gleitenden Durchschnitt eines Datensatzes zu finden. Anzahl der Begriffe in einem einfachen n-Punkt gleitenden Durchschnitt Wenn die Anzahl der Begriffe in der ursprünglichen Menge d ist und die Anzahl der in jedem Durchschnitt verwendeten Begriffe n ist. Dann wird die Anzahl der Begriffe in der gleitenden Durchschnittssequenz sein. Wenn Sie beispielsweise eine Sequenz von 90 Aktienkursen haben und den 14-tägigen Rollendurchschnitt der Kurse einnehmen, wird die rollende durchschnittliche Sequenz 90-14-177 Punkte haben. Dieser Rechner berechnet Bewegungsdurchschnitte, bei denen alle Begriffe gleich gewichtet werden. Sie können auch gewichtete gleitende Durchschnitte erstellen, in denen einige Begriffe stärker gewichtet werden als andere. Zum Beispiel geben mehr Gewicht zu jüngeren Daten, oder die Schaffung eines zentral gewichteten Mittelwert, wo die mittleren Begriffe werden mehr gezählt. Siehe die gewichteten gleitenden Durchschnitte Artikel und Taschenrechner für weitere Informationen. Zusammen mit bewegenden arithmetischen Mitteln betrachten einige Analytiker auch den bewegten Median der geordneten Daten, da der Median nicht von fremden Ausreißern betroffen ist. Bei der Berechnung eines laufenden Mittelwertes ist die Platzierung des Mittelwerts in der mittleren Zeitspanne sinnvoll Durchschnitt der ersten 3 Zeitabschnitte und platzierte sie neben Periode 3. Wir konnten den Durchschnitt in der Mitte des Zeitintervalls von drei Perioden platziert haben, das heißt, neben Periode 2. Dies funktioniert gut mit ungeraden Zeitperioden, aber nicht So gut für gleichmäßige Zeiträume. Also, wo würden wir den ersten gleitenden Durchschnitt platzieren, wenn M 4 Technisch, würde der Moving Average bei t 2,5, 3,5 fallen. Um dieses Problem zu vermeiden, glätten wir die MAs mit M 2. So glätten wir die geglätteten Werte Wenn wir eine geradzahlige Anzahl von Ausdrücken mitteln, müssen wir die geglätteten Werte glätten Die folgende Tabelle zeigt die Ergebnisse mit M 4.Mittelwerte Wenn diese Informationen vorliegen Gezeichnet auf einem Diagramm, sieht es wie folgt aus: Dies zeigt, dass es eine große Variation in der Anzahl der Besucher je nach Saison. Es gibt weit weniger im Herbst und Winter als im Frühjahr und Sommer. Wenn wir jedoch einen Trend in der Anzahl der Besucher sehen wollten, könnten wir einen 4-Punkte-Gleitender Durchschnitt berechnen. Wir erreichen dies durch die durchschnittliche Besucherzahl in den vier Quartalen 2005: Dann finden wir die durchschnittliche Besucherzahl in den letzten drei Quartalen 2005 und im ersten Quartal 2006: Dann die letzten beiden Quartale 2005 und die ersten beiden Quartale Von 2006: Das letzte Mittel, das wir finden können, ist für die letzten zwei Quartale von 2006 und die ersten zwei Quartale von 2007. Wir zeichnen die gleitenden Durchschnitte auf einem Diagramm und stellen sicher, dass jeder Durchschnitt in der Mitte der vier Viertel geplottet wird Es deckt: Wir sehen jetzt, dass es einen sehr leichten Abwärtstrend bei den Besuchern gibt.


No comments:

Post a Comment